On the Degree of Mixed Polynomial Matrices

نویسنده

  • Kazuo Murota
چکیده

The mixed polynomial matrix, introduced as a convenient mathematical tool for the description of physical/engineering dynamical systems, is a polynomial matrix of which the coefficients are classified into fixed constants and independent parameters. The valuated matroid, invented by Dress and Wenzel [Appl. Math. Lett., 3 (1990), pp. 33–35], is a combinatorial abstraction of the degree of minors (subdeterminants) of a polynomial matrix. We discuss a number of implications of the recent developments in the theory of valuated matroids in the context of polynomial matrix theory. In particular, we apply the valuated matroid intersection theorem to the analysis of the degree of the determinant of a mixed polynomial matrix to obtain a novel duality identity together with an efficient algorithm.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some results on the polynomial numerical hulls of matrices

In this note we characterize polynomial numerical hulls of matrices $A in M_n$ such that$A^2$ is Hermitian. Also, we consider normal matrices $A in M_n$ whose $k^{th}$ power are semidefinite. For such matriceswe show that $V^k(A)=sigma(A)$.

متن کامل

MATHEMATICAL ENGINEERING TECHNICAL REPORTS Combinatorial Relaxation Algorithm for the Entire Sequence of the Maximum Degree of Minors in Mixed Polynomial Matrices

Iwata–Takamatsu (2013) showed that the maximum degree of minors in mixed polynomial matrices for a specified order can be computed by combinatorial relaxation type algorithm. In this letter, based on their algorithm, we propose an efficient “combinatorial relaxation” algorithm for computing the entire sequence of the maximum degree of minors. In our previous work, we dealt with a similar proble...

متن کامل

Some Results on Polynomial Numerical Hulls of Perturbed Matrices

In this paper, the behavior of the pseudopolynomial numerical hull of a square complex matrix with respect to structured perturbations and its radius is investigated.

متن کامل

On the Construction of Generic Mixed Cayley-Sylvester Resultant Matrix

For a generic n-degree polynomial system which contains n+1 polynomials in n variables, we give the construction of the generic mixed Cayley-Sylvester resultant matrix. There are n− 1 generic mixed Cayley-Sylvester resultant matrices between the classical Cayley resultant matrix and the classical Sylvester resultant matrix. The entries of these new resultant matrix are of degree m(1 < m < n + 1...

متن کامل

Symbolic computation of the Duggal transform

Following the results of cite{Med}, regarding the Aluthge transform of polynomial matrices, the symbolic computation of the Duggal transform of a polynomial matrix $A$ is developed in this paper, using the polar decomposition and the singular value decomposition of $A$. Thereat, the polynomial singular value decomposition method is utilized, which is an iterative algorithm with numerical charac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Matrix Analysis Applications

دوره 20  شماره 

صفحات  -

تاریخ انتشار 1998